Trajectory planning with real time
vision-based obstacle detection

by
Xuemeng Li
B.A.Sc., Simon Fraser University, 2017
A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF ENGINEERING
in
The Faculty of Applied Science

(Electrical and Computer Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA
(Vancouver)
April 2020
© Xuemeng Li 2020

The following individuals certify that they have read, and recommend to
the Faculty of Graduate and Postdoctoral Studies for acceptance, the thesis
entitled:

Trajectory planning with real time vision-based obstacle
detection

submitted by Xuemeng Li in partial fulfillment of the requirements for the
degree of Master of Engineering in Electrical and Computer Engi-
neering.

Examining Committee:

Maryam Kamgarpour, Electrical and Computer Engineering, UBC
Supervisor

Mahdi Yousefi, Avestec Technologies Inc.
Supervisor

ii

Abstract

Autonomous aerial vehicles are broadly used to assist human in dangerous or
complex monitoring tasks, such as inspection of hard to reach high voltage
power lines and oil pipes, monitoring and distinguishing wildfire, and im-
proving precision farming. An autonomous navigation system can support
drones or robots to move towards targeted positions without any external
control. A fully functional autonomous system requires an integration on
a wide range of algorithms, including trajectory planning algorithms, ob-
ject detection with image processing and robust control algorithms for path
following.

In this report, an implementation of trajectory planning with object detected
from the video with depth information has been described. The locations
and sizes of the obstacles are determined through image processing and con-
vex optimization with the depth information collected from Intel RealSense
Camera. Then the trajectory planning function based on Rapid-exploring
random tree (RRT) algorithm will plan the path on the map which com-
bined the detected obstacles. This process would ensure drones or robots
reaching the destination domain safely.

iii

Table of Contents

Abstract e iii
Table of Contents iv
List of Tables v
List of Figures vi
List of Abbreviations, vii
Acknowledgements L0000 viii
1 Introduction L 1
2 Algorithm and Implementation 3
2.1 Rapid-exploring Random Tree Algorithm for Pathway Plan-
NING 3
2.2 Image Processing for Obstacle Detection 6
2.3 Measurement af the Object Size with RealSense Camera . . 7
2.4 Combination of Obstacle Detection and Trajectory Plan . . . 12
2.5 Update the path as obstacle moving 14
3 Discussion 16
4 Conclusionso 18
Bibliography 19

iv

List of Tables

2.1
2.2
2.3
2.4

2.5

Measurements for calibration (Height) 10
Measurements for calibration (Width) 10
Information from image 11
Measurement Result and Error Rate on Height(mm, percent-

Y 12
Measurement Result and Error Rate on Width(mm, percentage) 12

List of Figures

2.1 New Node Generation(Choset, 2015) 4
2.2 Path updated when new obstacle detected 5
2.3 Obstacle detected in depth field 6
2.4 Top view based on depth information. 7
2.5 Depth Field of View from camera manual (rea, 2019) 8
2.6 Definition of field of view oL 8
2.7 Images for calibration 10
2.8 Images for measurement test 11
2.9 Detect Obstacleon Map 13
2.10 Detected obstacle with minimum volume ellipsoid covered . . 14
2.11 Path updated when new objects detected 15
2.12 Path updated when object moved 15

vi

List of Abbreviations

Short

Long

RRT
RGB
ROS
SDK
FOV

Rapid-exploring Random Tree

Red green blue additive color model
Robot Operating System

Software development kit

Field of View

vii

Acknowledgements

I would like to thank Dr. Maryam Kamgarpour and Dr. Mahdi Yousefi for
supervising the project implementation and the final report.

viii

Chapter 1

Introduction

Autonomous aerial vehicles and robotics are broadly used to provide human
assistance on dangerous or complex tasks. Fields such as oil, mining, wildfire
extinguishing, and precision farming are requiring more and more robotic
involvement nowadays. To better accomplish the duties’ requirements, an
autonomous navigation system is essential for the robots or drones to safely
execute the work with minimal human control. In this project, an integration
of the obstacle detection and trajectory plan has been implemented as the
start point for the autonomous navigation system, before future integration
on robot’s hardware.

One of the main algorithms used in this project is the Rapid-exploring ran-
dom tree (RRT) algorithm for path planning. Initially brought up by Steven
M. LaVell and James J. Kuffner Jr (LaValle and Jr., 2001), the RRT algo-
rithm could efficiently search nonconvex and high-dimensional spaces by
constructing space-filling tree from samples drawn randomly in the search
space and inherent grows towards large unsearched areas. The algorithm has
been broadly discussed and implemented in education materials for robotics
such as Python Robotics (Sakai et al., 2018). Many variants and improve-
ments for motion planning have been studied and implemented based on this
algorithm. There are also comparison researches on improving the RRT al-
gorithms (Iram Noreen, 2016). With all these variants and improvements,
the original RRT algorithm holds its tidy and simplicity which is good to be
used as a start point. With original RRT algorithm, a tree will be created
through adding the new nodes. The next new points of the tree is gener-
ated based on the direction to random point, selected step size and whether
is on the obstacle. In this project, this original RRT algorithm has been
implemented as object-oriented with MATLAB.

Intel RealSense Camera D400 series is a stereo vision depth camera system
(rea, 2019). The small physical size and integrated camera SDK provide
flexibility on wide range of products including drones, robots, virtual re-
ality, PC peripherals and home surveillance. Works have been done for

Chapter 1. Introduction

image processing with RealSense Camera. For example, Chang utilized the
OpenCV DNN object detection package within RealSense Camera to out-
line the obstacles in RGB content in real-time (Chang, 2018). To better
utilize the depth information, Song and Xiao implemented depth maps for
object detection and designed a 3D detector to overcome the difficulties for
recognition based on rendering hundreds of viewpoints of a CAD model to
obtain synthetic depth maps (Song and Xiao, 2014). In this project, Intel’s
RealSense Depth Camera D435i has been used for object detection because
of its handy size, ease of integration with cross-platform open source In-
tel RealSense SDK application and stereo depth camera which designed to
maintain its calibration throughout lifetime.

In the following sections of this report, detailed implementation process and
discussion on the results will be described. For algorithm implementation,
there will be explanations on the generation of an RRT tree for trajectory
plan, identificaiton of the obstacle with the depth video file from RealSense
camera, measurement analysis of the camera and the integration of the im-
age processing with the trajectory plan. And in the section after, detailed
assessment of the work including error source, advantages and disadvan-
tages, and future steps for improvements will be discussed.

Chapter 2

Algorithm and
Implementation

The implementation of the project has been done in MATLAB. Rapid-
exploring Random Tree Algorithm has been implemented for trajectory
plan and object detection algorithm has been built with depth informa-
tion extracted from RealSense Camera. The overall implementation and
instructions have been committed to GitHub at https://github.com/
luckymeng7/EECE597.

2.1 Rapid-exploring Random Tree Algorithm for
Pathway Planning

Rapid-exploring Random Tree (RRT) algorithm was introduced by Steven
M. LaVell and James J. Kuffner Jr (LaValle and Jr., 2001). To efficiently
search nonconvex and high-dimensional spaces, the algorithm constructs a
space-filling tree from samples drawn randomly in the search space and
inherently grows towards large unsearched areas.

The output of the RRT algorithm is a tree(T) that contains all of the
randomly sampled nodes(q) with connection to their inherit points. With
object-oriented programming, each of the sampled node has been assigned as
an instantiation of Node class with properties including index, parent index,
position and path to node. The output tree is an instantiation of RRT class
which is defined to contain all generated nodes, with properties including
total number of the nodes, initial node, positions of all existing node and a
list of all existing nodes. A new node will be sampled in each iteration and
the RRT tree will be updated to include the new node if the path to this new
node has avoided the obstacle. To generate a new node(qnew), a random
point(qrand) will be firstly generated within the map range. Then it will be
connected to the nearest node(qnear) on the tree. On the connection line, a

3

https://github.com/luckymeng7/EECE597
https://github.com/luckymeng7/EECE597

2.1. Rapid-exploring Random Tree Algorithm for Pathway Planning

qnew

Step Size

qnear \.\\"\—..qrand

Figure 2.1: New Node Generation(Choset, 2015)

point with max-step distance (step size) to the nearest point will be selected
as the new node if it is confirmed as clear with obstacle free function. Figure
2.1 shows the generation of one new node to the tree. The algorithm will
use the initial point as the first Node of the tree, and update the RRT tree
until the distance between the latest generated node and destination point
is less than the step size.

For a general configuration space, the algorithm in pseudocode is as follow
(Iram Noreen, 2016):

Algorithm T=(V,E) « RRT*(qini)
T « InitializeTree();
T + InsertNode(, qini, T);

for i =1 to K do
grand « RAND_CONF ()
gnearest + NEAREST_VERTEX(qrand, T)
gnew « STEER (gnear, qrand, Aq)
if Obstaclefree(qnew) then

gnear + Near(D, qgnew, T);
gmin « Chooseparent(gnear, gqnew, gnearest);
T + InsertNode(qmin, gnew, T);
T + Rewire(T,gmin, gnew, gnear);

return T

e “<” denotes assignment. For instance, “largest < item” means that
the value of largest changes to the value of item.
e “return” terminates the algorithm and outputs the following value.

The inputs for the algorithm are initial position, destination position, max

2.1. Rapid-exploring Random Tree Algorithm for Pathway Planning

First path Updated path
100 £ 100 P L

80 80

60 60 Y

40

3 <ﬁ\\]

0 20 40 60 80 100 0 20 40 60 80 100
(a) (b)

20

Updated path Final path
100 P s 80 e *

80
? % 60
60 3 = Q F
O sl 40 o
T,

o £ i ¢)

20

-20 0 20 40 60 80 100 120 10 20 30 40

50 60 70 80 90
(©) (d)

Figure 2.2: Path updated when new obstacle detected

step size, obstacle size and position and the overall map size. The output
for the function is a planned path and the overall tree.

Real-time obstacle detection has also been implemented. As the robot mov-
ing forward, the function would recalculate the tree when it detects a new
obstacle shows up. The current position would be taken as the new start
point and the destination position would still be the same. Figure 2.2 shows
path updated twice after initial path planned. This figure is generated by
running script pathPlan__main.m in folder “PathPlanRRT” on GitHub.

At the beginning, a original RRT path was calculated from the start point to
destination point. Figure 2.2 (a) shows the original path with one obstacle
detected in the filed. Then in figure 2.2 (b), a new obstacle was added
to the canvas after the robot moved along the original path for 10 steps.
The current position at the time of (b) for the robot was the 10th Node
on the original path. A new RRT tree was calculated to update the path
which avoided the new obstacle. Similarly, in figure 2.2 (c), a new obstacle
was added to the canvas after the robot moved along the updated path
for another 30 steps. Another new RRT was calculated to avoid the new
obstacle. Then the robot would move on with the updated path to the

https://github.com/luckymeng7/EECE597/blob/master/PathPlanRRT/pathPlan_main.m

2.2. Image Processing for Obstacle Detection

Detect Obstacle area

Regular RGB image

(a) (b)

Figure 2.3: Obstacle detected in depth field

destination point. Figure 2.2 (d) shows the actual path of the robot moving
from start to end point when new obstacles showed up along the way.

The density of the tree indicates the total generated Nodes on the tree to get
a viable path. Mode random points generated to get the path lead to more
nodes on the tree. Small step size or long distance between the start and
end point would increase the number of calculating iterations for the RRT.
Other variants such as the position of obstacles and the distance between
obstacles would also influence the total number of nodes.

2.2 Image Processing for Obstacle Detection

With the video stream captured with Intel RealSense camera, the depth
information could be used for object detection. The output file type of
the RealSense camera is bag file. Bag is a file format in ROS for storing
ROS message data (Saito, 2015). An example of the bag file that used in
this project is uploaded to GitHub at https://github.com/luckymeng7/
EECES597 /tree/master/Videos. With MATLAB’s ROS toolbox, the
bag video was imported and processed as depth frames and RGB frames. A
function has been implemented to identify the obstacle based on the depth
information. On each of the frames, an obstacle mask will be created in
which all the pixels that has depth value within the sensitive detection range
will be set to 100 and the rest of pixels will be set to 0. A comparison between
regular RGB image and detected obstacle area are shown in figure 2.3.

In order to project the obstacles properly onto the map where the trajectory
is to be planned, top views for each frame are created by switching the depth
value with the height index. By looping through the columns number of the
depth image, using the smallest depth value of each column as the row

https://github.com/luckymeng7/EECE597/tree/master/Videos
https://github.com/luckymeng7/EECE597/tree/master/Videos

2.3. Measurement af the Object Size with RealSense Camera

2000 mm

0 280

Figure 2.4: Top view based on depth information

number and assign row number of the related point to the value of that
pixel for the top view. The reason of using the top view for the obstacles
is that we are assuming the robots are moving horizontally on the map in
figure 2.2. Therefore, we are assuming the obstacles on map in figure 2.2
align at the same horizontal level as the robot. If the camera sits along
x axis, facing y positive, the x and y axes on the map are the width and
distance value in the camera. To define the obstacle, a distance threshold is
used to set the limitation of the depth size. For example, in the following
demos, only objects within two meters to the camera would be captured as
object and saved in top view as figure 2.4.

Figure 2.3 and 2.4 are generated by running script videoProcess__main.m
in folder “ObjectDetection” on GitHub. Output videos are created by com-
bining frames of top views generated with depth frames.

2.3 Measurement af the Object Size with
RealSense Camera

Based on the datasheet of the RealSense camera (rea, 2019), the horizontal
field of view (FOV) for depth image is 74 degree and vertical field of view
for depth image is 62 degree.

Based on the definition of FOV in figure 2.6, the actual width and height
based on the pixel value could be calculated as:

https://github.com/luckymeng7/EECE597/blob/master/ObjectDetection/videoProcess_main.m

2.3. Measurement af the Object Size with RealSense Camera

4.3 Depth Field of View (FOV)

The depth field of view is the common overlap of the individual left and right Imager
field of view for which Vision Processor D4 provides depth data

Table 4-5. Depth Field of View

Format D400/D410/D415 D420/D430/D435/D435i
Horizontal FOV (VGA 4:3) 48 74
Vertical FOV (VGA 4:3) 40 62
Diagonal FOV (4:3) 60 88
Horizontal FOV (HD 16:9) 64 86
Vertical FOV (HD 16:9) 41 57
Diagonal FOV (HD 16:9) 72 94

NOTE:

« Due to mechanical tolerances of +/-5%, Max and Min FOV values can vary from lens to
lens and module to module by ~ +/- 3 degrees.

« The Depth FOV specified is at 2 meters distance.

Figure 2.5: Depth Field of View from camera manual (rea, 2019)

Half of the max height H

Depth

A

Half of FOV angle: theta/2

tan(theta/2) = Half of the max height/Depth

Figure 2.6: Definition of field of view

2.3. Measurement af the Object Size with RealSense Camera

. widthpixel 74
ctuatwidth resolutiononwidth depth - tan(2)
. heightpixel 74
Actualheight = - depth - tan(—) - 2
cruathery resolutiononwidth b an(2)

In order to use actual size as base point to do the calibration, I transferred
the above equations into:

74 _rp- L1
- 11-D1

Where,

e 1p is the resolution on width or height direction,
e L1 is the actual width or height,

e 11 is the pixel number on width or height,

e D1 is the depth distance.

After another transformation for the above equation, we will get:

L1 L2

npl B C

With the above function, we could calculate the constant C with the actual
length L1 measured by ruler, the length in pixel 11 on the RGB frame and
the depth value D1 from the depth frame of the first object. Then, actual
length of L2 could be calculated for the second object based on constant C,
the length in pixel 12 on the RGB frame and the depth value D2 from the
depth frame. To increase the accuracy of the calculation for L2, multiple L1
objects could be measured. Then L2 are calculated with the average of C.

The tables 2.1 and 2.2 are the measurements of the first group of objects to
calibrate the measurement, with a resolution of 1280x720 for depth image
and RGB image. Regular-shape objects are chosen for the calibration to
increase the accuracy. The measurement of actual height and width are
done with a ruler on the object and the measurement of height and width in
pixel is measured on the RGB image directly. The depth value of the center
point of each object has been used as the depth value for the overall object.
The unit for actual length are millimetre.

2.3. Measurement af the Object Size with RealSense Camera

Table 2.1: Measurements for calibration (Height)

Item Depth(mm) Height(Actual) Height(Pixel) Ch
1 415 75 171 0.00106
2 297 90 270 0.00112
3 683 252 336 0.00109

Table 2.2: Measurements for calibration (Width)

Item Depth(mm) Width(Actual) Width(Pixel) Cw
1 415 225 489.0 0.00111
2 297 142 435.0 0.00109
3 683 173 227.5 0.00111

Figure 2.7: Images for calibration

10

2.3. Measurement af the Object Size with RealSense Camera

Figure 2.8: Images for measurement test

Table 2.3: Information from image

Item Depth(mm) Height(Pixel) Avg. Ch Width(Pixel) Avg. Cw

4 2890 670 0.00109 225 0.0011
5 325 201 0.00109 152 0.0011
6 557 518 0.00109 117 0.0011

Figure 2.7 are the images for the above objects (1,2,3 from left to right):

To evaluate the accuracy of the calculate with equation

L1 L2

ipl R ¢

, the three objects in figure 2.8 are measured.

The results of the calculation and measurement are as tables 2.3, 2.4 and
2.5, where
L2=C-12-D2

According to the datasheet (rea, 2019) of RealSense Camera, there is a me-
chanical tolerance of +/-5% for the camera. Therefore, the error measured
is within the tolerance. As we could see, the error is relatively smaller if
the shape of the object is rectangle and the object is facing the camera per-
pendicularly. Physical measurement on object with anomalous shape will
introduce more error compare to rectangles. Also, to simplify the calcula-
tion, depth value of the center on the object was used for the calculation.

11

2.4. Combination of Obstacle Detection and Trajectory Plan

Table 2.4: Measurement Result and Error Rate on Height(mm, percentage)

Item Calculated Height Actual Height Error Rate

4 2110.0 2100 0.48
5 71.2 80 11.00
6 314.5 325 3.20

Table 2.5: Measurement Result and Error Rate on Width(mm, percentage)

Item Calculated Width Actual Width Error Rate

4 898.0 920 24
) 54.3 60 9.5
6 71.7 82 12.6

However, this is not always viable. For example, the depth value at the
center of the water bottle is different from the depth value for the edge.
This deviation on depth value will introduce error. Objects not facing the
camera perpendicularly will also introduce errors with the misalignment for
the width and height.

To increase the accuracy for the calculation, two approaches could be done
in the future. Firstly, instead of using the depth value at the center of
the object to represent the distance to the whole object, we could calculate
average depth of the object and use it for calculation. Another method is to
calculate the width and height with the coordination in 3D which combines
both depth and RGB information.

2.4 Combination of Obstacle Detection and
Trajectory Plan

In order to integrate the detected obstacle onto the trajectory plan, the
top view of detected obstacle will be projected on the map after re-sizing
and rotation. Assuming initially the camera is facing the direction from
start point to destination point and the current map size is on a dimension
of 200x200 pixel, the top view of the obstacle will be re-sized to meet the
mapping scale and rotated based on camera orientation. An obstacle mask

12

2.4. Combination of Obstacle Detection and Trajectory Plan

Topview of the depth img, after conversion

Mask for map, after rotation and shift

%

(@ (b) ©

Figure 2.9: Detect Obstacle on Map

based on the top view frames will be shifted onto the map with the bottom
center point of the mask coincide with the camera’s current position. When
new obstacles detected as the camera moving forward, the trajectory plan
function will re-calculate the path with generating a new RRT tree. Figure
2.9 shows the obstacle mask generated with the top view frame from section
2.2 and an RRT path is calculated with obstacle mask projected on map
after rotation and shifting. The scale for the map is 1:31.25, which means
that 31.25 pixels on the map represent 1 meter.

Once the camera starts to move based on the generated path, the object
detection and path recalculation will continue. After the start point, the
direction of the camera will be changed to the vector difference between
current position and previous position. The newly generated mask will be re-
sized, shifted and rotated to the new position and direction. If the obstacles
condition has been changed since last projection, a new RRT tree will be
generated and the camera will move along the new path.

In order to increase the safety and avoid the drone being trapped in the
anomaly shaped obstacle, a minimum volume ellipsoid has been generated
to cover all of the obstacle points as shown in f(c) of igure 2.10. The algo-
rithm to find the ellipsoid is discussed in the textbook “Convex Optimiza-
tion” [(Boyd and Vandenberghe, 2009)and the function usage in MATLAB
is described in [(Mutapcic, 2019) . This method is efficient for one single
obstacle in the field. When multiple obstacles exist, this algorithm would
cover all the obstacles in one ellipsoid, which would increase error rate and
increase the difficulty of finding a viable path.

Because of the long RRT calculation time and video processing time, the
object will be checked every 5s when the robot’s moving speed is 0.1m/s

13

2.5. Update the path as obstacle moving

Topview of the depth img, after conversion Minimum Volume Ellipsoid First path
n Mask for map, after rotation and shift 90 200

%

(2) (b)

0 50 100 150 200

(d)

Figure 2.10: Detected obstacle with minimum volume ellipsoid covered

2.5 Update the path as obstacle moving

Two scenarios have been demonstrated to show that the implementation
could recalculate the path when the camera detects the object change. Mul-
tiple obstacles would show up in the global map as the robot moving along
the path. Also, the original obstacles would change the position from time
to time. The program would recalculate the RRT tree when changes happen
to the environment.

Ideally, the path would only be recalculated when new obstacles are added
in the map as shown in figure 2.2. However, in reality, with the vibration
and noise, the information of the detected obstacles will change all the time.
If the function is set to recalculate the RRT whenever detecting a change
in obstacles, it would keep recalculating all the time. Therefore, an update
rate as has been defined to set the time between the updates of the camera
streaming. In the example demo, the update rate has been set to 20 iter-
ations. The updated camera video will be checked when the robot moves
along the previously defined path for 20 steps. With the scale as 1:31.25 and
step size as 2, the camera will be checked everytime when the robot moves
for 1.28 meter. This update rate is defined in integrate_ main.m in folder
“Integrate” on GitHub and could be modified as needed.

Figure 2.11 shows the path updated when new objects detected. And figure
2.12 shows the path updated when a single objet changes position as the
robot is moving.

The update for obstacles are done by streaming the video separately at
different time point. Then these videos are fed into the path plan funciton
to recalculate the path. This process indicates the concept of the capability
on updating the obstacles in real time. An actual real time object detection

14

https://github.com/luckymeng7/EECE597/blob/master/Integrate/integrate_main.m

2.5. Update the path as obstacle moving

_ First path - Update path - Update path - Final path
o
/\/
150 150 150 150 <"
%
100 100 100 100
i
|
50 Q { 50 50 50 Q
E.' Y
(J e/
0 0 0 0
0 5 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
(a) (b) (©) ()

Figure 2.11: Path updated when new objects detected

First path Updated path Updated path Final path
200 B 200 P P 200 P P 200 e
150 150 150 150
100 100 100 100 Q
50 50 50 50
0 0 0 0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150
(@) (b) © @

Figure 2.12: Path updated when object moved

during path planning could be implemented with RealSense SDK in the
future.

15

Chapter 3

Discussion

With the implementation from this project, a trajectory planning method-
ology that is capable of detecting the obstacle with camera has been im-
plemented. In this section, analysis on the RRT algorithm, error rate and
source for the measurement with RealSense camera, limitation of the imple-
mentation and future work will be discussed.

The advantage for RRT algorithm is that a collision avoidance path from
initial point to the destination would for sure be created, as long as it ex-
ists. However, as the algorithm will generate random points to build the
tree exhaustively, the computation time will increase dramatically when the
obstacles are close to the destination point, which showed in figure 2.2. It
is important to choose a proper value for the step size between each node
on RRT. If the step size is too small, there will be too many nodes to be
generated between the two points on the map. This would increase the
calculation time. However, if the step size is too large, chances for finding
a proper path between obstacles would be decreased, especially for those
anomaly shape paths between two obstacles.

The objects captured by the camera were measured. The measurement
result defines the scale for transferring the obstacle to the map canvas. In
order to increase the accuracy for the measurement, several reference objects
have been used for calibration. However, the error rate for the measurement
ranges from 0.48% - 12.6%. We noticed that when the object to be measured
has a flat surface whose distance to the camera is about the same across the
surface and has a regular shape such as rectangle, the error rate would
be lower. And when the object has an irregularly or convex shape such
as cylinder, the error rate would be higher. The reason is that the depth
information for the flat surface is mostly uniform, but the depth information
on the cylindrical surface varying. Current calculation for measurement
is based on the depth info at the center point of the object. Therefore,
there will be a bias on the depth value. Similarly, the error from varying
depth value would be introduced if the surface is not facing the camera

16

Chapter 3. Discussion

perpendicularly. To solve this problem, we could use 3D coordination which
combined both RGB and depth information for the measurement.

Another limitation for the current implementation for obstacle detection is
the usage of minimum volume ellipsoid algorithm. With this algorithm, an
ellipsoid would be generated around the obstacles with anomaly shape. This
would increase the safety by avoiding a path that goes inside the anomaly
shaped obstacles and causing the drone or robot trapped. However, this
algorithm only calculates one ellipsoid at a time. It would output one large
ellipsoid if there are multiple obstacles scatter on the map. Some classifica-
tions should be done before using this algorithm.

One more limitation for the current implementation is that the path plan-
ning is not online. Currently, the scripts are importing the recorded video
for image processing and object detection. Then the processed results are
imported as obstacle information to the pathway planning algorithm. The
video reading process take more than 10s to finish and this set a bottleneck
in implementing it in real-time with MATLAB. As the SDK for RealSense
camera supports real-time image processing, the development environment
should be changed to C++ for further implementation to take advantage of
the RealSense SDK application.

In the future, there are several directions for this project to be continued.
One is the implementation of the object detection in real-time with OpenCV
packages provided by RealSense. With the RealSense SDK, saving the inter-
nal processed result of the video streaming is no longer needed. The depth
information detected in real-time will be input directly to the object de-
tection function, converted to top view and then added on the pre-defined
map for the next path planning calculation. Another direction of future
work could be improving the algorithm of the pathway planning and ob-
stacle detection. Also, a feedback control algorithm should be implemented
to support the drone or robot to follow the planned path properly. At the
end, a real-time system combining the functions of obstacle detection, path
planning and path tracking would fully support the autonomous navigation
of the robotic system.

17

Chapter 4

Conclusions

The trajectory planning algorithm implemented in this project is capable to
detect the obstacles from a depth camera and generate a pathway to avoid
the collision to the detected obstacles. RRT algorithm has been integrated
for pathway planning with the obstacle detection implemented based on
image processing with the video captured by RealSense camera. In the
future, control algorithm for path following and object detection in real-
time with RealSense SDK application with improved pathway planning and
obstacle classification algorithms should be implemented.

18

Bibliography

(2019). Intel RealSense D400 Series Product Family.

Boyd, S. and Vandenberghe, L. (2009). Convexr Optimization. Cambridge
University Press.

Chang, C. Y. (2018). Realsense opencv dnn object detection.
=https://github.com/twMr7/rscvdnn.

Choset, H. (2015). Robotic motion planning: Rrt’s. Visited on, pages 09-27.

Iram Noreen, Amna Khan, Z. H. (2016). A comparison of rrt, rrt* and
rrt*-smart path planning algorithms. IJCSNS International Journal of
Computer Science and Network Security, 16(10):20-27.

LaValle, S. M. and Jr., J. J. K. (2001). Rapidly-exploring random trees:
Progress and prospects. pages 293-308.

Mutapcic, A. (2019). Minimum volume ellipsoid covering a finite set.
Saito, I. (2015). Bags. =http://wiki.ros.org/Bags.

Sakai, A., Ingram, D., Dinius, J., Chawla, K., Raffin, A., and Paques, A.
(2018). Pythonrobotics: a python code collection of robotics algorithms.

Song, S. and Xiao, J. (2014). Sliding shapes for 3d object detection in depth
images. 13th European Conference on Computer Vision.

19

=
=

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Acknowledgements
	Introduction
	Algorithm and Implementation
	Rapid-exploring Random Tree Algorithm for Pathway Planning
	Image Processing for Obstacle Detection
	Measurement af the Object Size with RealSense Camera
	Combination of Obstacle Detection and Trajectory Plan
	Update the path as obstacle moving

	Discussion
	Conclusions
	Bibliography

